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Overall dimensions: 

• Length: 8.79 m 

• Maximum width: 4.04 m

• Dry mass: 1599 kg

• Wet mass: 1783 kg

Understanding the variety of system architectures and formation histories of planetary systems 

remains a major challenge. Current detection methods are strongly biased towards short-period 

bodies, leaving a gap in the exoplanet population demographics [1], [2].

Thermal

• 7-layer sunshield (213 K to 77.5 K)

• Thermal decoupling with heaters and 

radiators

• Surface coatings and insulators
ADCS

• Rough pointing: 6 sun sensors, gyroscope, 

2 star trackers, 8 thrusters, 4 reaction 

wheels

• Fine pointing: Fine guidance sensor, fast 

steering mirror

Communication

• High gain system (science downlink) with 1 

dish antenna and 2 transceivers

• Low gain system (TM/TC) with 3 omni 

antennas and 2 transceivers

• Data volume: up to 250 Gbits/week

Power

• Solar panel area: 5.72 m2 (no eclipses 

during lifetime, driven by manoeuvre mode) 

• Battery capacity: 2300 Wh (driven by 

launch mode)

Propulsion

• 51 N thruster dimensioned for transfer burn 

into L2 orbit. (3 total for redundancy)

• Propellant: Monopropellant + hydrazine

Figure 5: Overview of the Exodus spacecraft.
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Figure 4: The payload module holds the 

optical parts, while the service module houses 

the subsystem components. The solar panels 

are attached to the sunshield support.

Main spacecraft bus design drivers:

▪ Instrument constraint: < 73 K 

▪ Observation pointing precision: 50 mas 

performance drift error across 72 hours

Figure 7: Exodus spacecraft 
placed in Ariane 62 fairing.

Figure 2: VIS lightpath of the VIS-

NIR telescope. The fast-steering 

mirror increases telescope pointing 

precision through fast tilt-shift 

corrections on the collimated beam.

NIR observations of the planet

• Cassegrain telescope 

• Main mirror diameter: 2.4 m 

• FOV: 10 arcsec

• Focal length: 12.6 m

Figure 1: Optical path and 

configuration of the UV telescope 

based on the near-ultraviolet part 

of the SPARCS CubeSat mission 

payload [8].

UV target: Mg II H&K, Ca II H&K

lines (stellar activity tracers).

Figure 3: NIR lightpath of the VIS-NIR telescope.  a) Adaptive optics system. b)  MARY instrument.

NIR target: He 1083 nm line of planet’s atmosphere (coronography to block out star light)

VIS target: Hα 656 nm line (trace stellar activity) + pointing corrections 
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Iterations with the COMET tool at ESA Education Training Centre 

Concurrent Design Facility led to refinements of Exodus’ subsystems.

• Payload: from a complex, low TRL single telescope design to two 

specialized telescopes — one for VIS-NIR observations and one for the 

UV spectral range.

• FOV of MARY instrument: changed from 3 to 10 arcsec, increasing 

the diversity and number of exoplanets observed.

• Simultaneous observations of stellar activity and atmospheric loss 

will reveal the impact of host stars on planetary systems.

• High contrast observations will reduce technique biases in new 

detections and enable comparisons with Solar System architecture.

Figure 6: Exodus aims to monitor atmospheric escape in relation to 

stellar activity for over 5000 exoplanets, refining our understanding 

of exoplanet diversity and the conditions required for habitability.

Exodus is a mission to study the largely unexplored population of sub-Neptune to Jupiter-sized 

exoplanets with orbital periods greater than 100 days, through new detections and characterisation 

of atmospheric escape [3-7].

Mission profile

a) b)

Manoeuvre (with margins) ∆V [m/s]

Launch + transfer 55.00

Orbit maintenance (5 years) 44.63

Disposal 15.75

Total 115.38

Scientific questions:

1. How does atmospheric escape shape the evolution of long orbital period exoplanets?

2. What proportion of the exoplanet population do planets with long orbital periods represent? 

3. How does the Solar System architecture compare to that of exoplanet systems?

UV monitoring of stellar activity 

• Ritchey-Chrétien configuration
• Primary mirror diameter: 9.3 cm

• FOV: 40 arcmin 

Payload
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